Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Comp Funct Genomics. 2004;5(5):419-31. doi: 10.1002/cfg.415.

Genome-wide analysis of the effects of heat shock on a Saccharomyces cerevisiae mutant with a constitutively activated cAMP-dependent pathway.

Author information

  • 1Department of Biomolecular Sciences, UMIST, Manchester M60 1QD, UK.

Abstract

We have used DNA microarray technology and 2-D gel electrophoresis combined with mass spectrometry to investigate the effects of a drastic heat shock from 30 to 50 on a genome-wide scale. This experimental condition is used to differentiate between wild-type cells and those with a constitutively active cAMP-dependent pathway in Saccharomyces cerevisiae. Whilst more than 50% of the former survive this shock, almost all of the latter lose viability. We compared the transcriptomes of the wildtype and a mutant strain deleted for the gene PDE2, encoding the high-affinity cAMP phosphodiesterase before and after heat shock treatment. We also compared the two heat-shocked samples with one another, allowing us to determine the changes that occur in the pde2Delta mutant which cause such a dramatic loss of viability after heat shock. Several genes involved in ergosterol biosynthesis and carbon source utilization had altered expression levels, suggesting that these processes might be potential factors in heat shock survival. These predictions and also the effect of the different phases of the cell cycle were confirmed by biochemical and phenotypic analyses. 146 genes of previously unknown function were identified amongst the genes with altered expression levels and deletion mutants in 13 of these genes were found to be highly sensitive to heat shock. Differences in response to heat shock were also observed at the level of the proteome, with a higher level of protein degradation in the mutant, as revealed by comparing 2-D gels of wild-type and mutant heat-shocked samples and mass spectrometry analysis of the differentially produced proteins.

PMID:
18629174
[PubMed]
PMCID:
PMC2447466
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk