Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success

Basic Res Cardiol. 2008 Sep;103(5):464-71. doi: 10.1007/s00395-008-0737-9. Epub 2008 Jul 14.

Abstract

Repetitive cycles of reflow/reocclusion in the initial 2 min following release of a prolonged coronary occlusion, i.e., ischemic postconditioning (IPoC), salvages ischemic myocardium. We have proposed that the intermittent ischemia prevents formation of mitochondrial permeability transition pores (MPTP) by maintaining an acidic myocardial pH for several minutes until survival kinases can be activated. To determine other requisites of IPoC, isolated rabbit hearts were subjected to 30 min of regional myocardial ischemia and 120 min of reperfusion. Infarct size was determined by staining with triphenyltetrazolium chloride. During the first 2 min of reperfusion the perfusate was either at pH 7.4 following equilibration with 95% O(2)/5% CO(2), pH 6.9 following equilibration with 80% N(2)/20% CO(2), or pH 7.8 following equilibration with 100% O(2). Whereas acidic, oxygenated perfusate for the first 2 min of reperfusion was cardioprotective, protection was lost when acidic perfusate was hypoxic. However, the acidic, hypoxic hearts could be rescued by addition of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, to the perfusate. Therefore, both low pH and restoration of oxygenation are necessary for protection, and the signaling step requiring combined oxygen and H(+) must be upstream of PKC. To gain further insight into the mechanism of IPoC, the latter was effected with 6 cycles of 10-s reperfusion/10-s reocclusion. Its protective effect was abrogated by either making the oxygenated perfusate alkaline during the reperfusion phases or making the reperfusion buffer hypoxic. Presumably the repeated coronary occlusions during IPoC keep myocardial pH low while the resupply of oxygen during the intermittent reperfusion provides fuel for the redox signaling that acts to prevent MPTP formation even after restoration of normal myocardial pH. Hearts treated simultaneously with IPoC and alkaline perfusate could not be rescued by addition to the perfusate of either PMA or SB216763 which inhibits GSK-3beta, the putative last cytoplasmic signaling step in the signal transduction cascade leading to MPTP inhibition. Yet cyclosporin A which also inhibits MPTP formation does rescue hearts made alkaline during IPoC. In view of prior studies in which the ROS scavenger N-2-mercaptopropionyl glycine aborts IPoC's protection, our data reveal that IPoC's reperfusion periods are needed to support redox signaling rather than improve metabolism. The low pH, on the other hand, is equally necessary and seems to suppress MPTP directly rather than through upstream signaling.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acidosis / metabolism*
  • Animals
  • Coronary Circulation
  • Disease Models, Animal
  • Ischemic Preconditioning, Myocardial / methods*
  • Mitochondrial Membrane Transport Proteins / metabolism*
  • Mitochondrial Permeability Transition Pore
  • Myocardial Infarction / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Infarction / therapy
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / therapy*
  • Oxygen / metabolism*
  • Rabbits
  • Time Factors

Substances

  • Mitochondrial Membrane Transport Proteins
  • Mitochondrial Permeability Transition Pore
  • Oxygen