Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2008 Aug 26;155(3):714-24. doi: 10.1016/j.neuroscience.2008.06.022. Epub 2008 Jun 17.

Clusterin expression during fetal and postnatal CNS development in mouse.

Author information

  • 1Division of Neuropsychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Ch du petit-Bel-Air, CH-1225 Chene-Bourg, Geneva, Switzerland. Yves.Charnay@medecine.unige.ch

Abstract

Clusterin (or apolipoprotein J) is a widely distributed multifunctional glycoprotein involved in CNS plasticity and post-traumatic remodeling. Using biochemical and morphological approaches, we investigated the clusterin ontogeny in the CNS of wild-type (WT) mice and explored developmental consequences of clusterin gene knock-out in clusterin null (Clu-/-) mice. A punctiform expression of clusterin mRNA was detected through the hypothalamic region, neocortex and hippocampus at embryonic stages E14/E15. From embryonic stage E16 to the first week of the postnatal life, the vast majority of CNS neurons expressed low levels of clusterin mRNA. In contrast, a very strong hybridizing signal mainly localized in pontobulbar and spinal cord motor nuclei was observed from the end of the first postnatal week to adulthood. Astrocytes expressing clusterin mRNA were often detected through the hippocampus and neocortex in neonatal mice. Real-time polymerase chain amplification and clusterin-immunoreactivity dot-blot analyses indicated that clusterin levels paralleled mRNA expression. Comparative analyses between WT and Clu-/- mice during postnatal development showed no significant differences in brain weight, neuronal, synaptic and astrocyte markers as well myelin basic protein expression. However, quantitative estimation of large motor neuron populations in the facial nucleus revealed a significant deficit in motor cells (-16%) in Clu-/- compared with WT mice. Our data suggest that clusterin expression is already present in fetal life mainly in subcortical structures. Although the lack of this protein does not significantly alter basic aspects of the CNS development, it may have a negative impact on neuronal development in certain motor nuclei.

PMID:
18620027
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk