Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Chemother Pharmacol. 2009 Mar;63(4):711-22. doi: 10.1007/s00280-008-0790-y. Epub 2008 Jul 11.

Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells.

Author information

  • 1Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.


In this study, the effect of MDR-1 gene silencing, using small interfering RNA (siRNA), and paclitaxel (PTX) co-therapy in overcoming tumor multidrug resistance was examined. Poly(ethylene oxide)-modified poly(beta-amino ester) (PEO-PbAE) and PEO-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles were formulated to efficiently encapsulate MDR-1 silencing siRNA and PTX, respectively. Upon administration in multidrug resistant SKOV3(TR) human ovarian adenocarcinoma cells, siRNA-mediated MDR-1 gene silencing was evident at 100 nM dose. Combination of MDR-1 gene silencing and nanoparticle-mediated delivery significantly influenced the cytotoxic activity of PTX in SKOV3(TR) cells similar to what was observed in drug sensitive SKOV3 cells. We speculate that the enhancement in cytotoxicity was due to an increase in intracellular drug accumulation upon MDR-1 gene silencing leading to an apoptotic cell-kill effect. Taken together, these preliminary results are highly encouraging for the development of combination nano-therapeutic strategies that combine gene silencing and drug delivery to provide more potent therapeutic effect, especially in refractory tumors.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk