Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2008 Sep;148(1):620-41. doi: 10.1104/pp.108.123141. Epub 2008 Jul 3.

Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols.

Author information

  • 1UMR 204, INRA-AgroParisTech, Laboratoire de Biologie des Semences, AgroParisTech, Chaire de Physiologie Végétale, F-75231 Paris cedex 05, France. loic.rajjou@agroparistech.fr

Abstract

A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.

PMID:
18599647
[PubMed - indexed for MEDLINE]
PMCID:
PMC2528126
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk