Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Philos Trans A Math Phys Eng Sci. 2008 Sep 13;366(1878):3155-73. doi: 10.1098/rsta.2008.0090.

An efficient approach to converting three-dimensional image data into highly accurate computational models.

Author information

  • 1School of Engineering, Computing and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK. philippe.g.young@exeter.ac.uk

Abstract

Image-based meshing is opening up exciting new possibilities for the application of computational continuum mechanics methods (finite-element and computational fluid dynamics) to a wide range of biomechanical and biomedical problems that were previously intractable owing to the difficulty in obtaining suitably realistic models. Innovative surface and volume mesh generation techniques have recently been developed, which convert three-dimensional imaging data, as obtained from magnetic resonance imaging, computed tomography, micro-CT and ultrasound, for example, directly into meshes suitable for use in physics-based simulations. These techniques have several key advantages, including the ability to robustly generate meshes for topologies of arbitrary complexity (such as bioscaffolds or composite micro-architectures) and with any number of constituent materials (multi-part modelling), providing meshes in which the geometric accuracy of mesh domains is only dependent on the image accuracy (image-based accuracy) and the ability for certain problems to model material inhomogeneity by assigning the properties based on image signal strength. Commonly used mesh generation techniques will be compared with the proposed enhanced volumetric marching cubes (EVoMaCs) approach and some issues specific to simulations based on three-dimensional image data will be discussed. A number of case studies will be presented to illustrate how these techniques can be used effectively across a wide range of problems from characterization of micro-scaffolds through to head impact modelling.

PMID:
18573757
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk