Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Genet. 2008 Aug;124(1):19-29. doi: 10.1007/s00439-008-0522-8. Epub 2008 Jun 13.

Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases.

Author information

  • 1Computational Genetics Laboratory, Norris-Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH, USA.

Abstract

One of the central goals of human genetics is the identification of loci with alleles or genotypes that confer increased susceptibility. The availability of dense maps of single-nucleotide polymorphisms (SNPs) along with high-throughput genotyping technologies has set the stage for routine genome-wide association studies that are expected to significantly improve our ability to identify susceptibility loci. Before this promise can be realized, there are some significant challenges that need to be addressed. We address here the challenge of detecting epistasis or gene-gene interactions in genome-wide association studies. Discovering epistatic interactions in high dimensional datasets remains a challenge due to the computational complexity resulting from the analysis of all possible combinations of SNPs. One potential way to overcome the computational burden of a genome-wide epistasis analysis would be to devise a logical way to prioritize the many SNPs in a dataset so that the data may be analyzed more efficiently and yet still retain important biological information. One of the strongest demonstrations of the functional relationship between genes is protein-protein interaction. Thus, it is plausible that the expert knowledge extracted from protein interaction databases may allow for a more efficient analysis of genome-wide studies as well as facilitate the biological interpretation of the data. In this review we will discuss the challenges of detecting epistasis in genome-wide genetic studies and the means by which we propose to apply expert knowledge extracted from protein interaction databases to facilitate this process. We explore some of the fundamentals of protein interactions and the databases that are publicly available.

PMID:
18551320
[PubMed - indexed for MEDLINE]
PMCID:
PMC2780579
Free PMC Article

Images from this publication.See all images (1)Free text

Figure 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk