Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biomed Mater Res A. 2009 Aug;90(2):472-7. doi: 10.1002/jbm.a.32118.

Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction.

Author information

  • 1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China. xjjiang@yahoo.com


Myocardial infarction (MI) and the subsequent heart failure remain one of the leading causes of morbidity and mortality world wide. A number of studies have demonstrated that bioderived materials improve cardiac function after implantation because of their angiogenic potential. In this study, we hypothesized that injection of biomaterials into infarcted myocardium can preserve left ventricular (LV) function through its prevention of paradoxical systolic bulging. To test this hypothesis, infarction was induced in rabbit myocardium by coronary artery ligation. After 1 week, 200-microL alpha-cyclodextrin (alpha-CD)/MPEG-PCL-MPEG hydrogel was injected into the infarcted myocardium. Injection of phosphate buffered saline (PBS) served as controls. Twenty-eight days after the treatment, histological analysis indicated that the injection of hydrogel prevented scar expansion and wall thinning compared with the control (p < 0.05) without more microvessel density in infarcted myocardium (p = 0.70). LV ejection fraction, determined by echocardiography, was significantly greater in the hydrogel-treated group (56.09% +/- 8.42%) than the control group (37.26% +/- 6.36%, p = 0.001). The LV end-diastolic and end-systolic diameters were 2.07 +/- 0.33 cm and 1.74 +/- 0.30 cm, respectively, in the control group. Smaller LV end-diastolic diameter (1.61 +/- 0.26 cm, p = 0.005) and smaller end-systolic diameter (1.17 +/- 0.23 cm, p = 0.001) were found in the hydrogel-treated group. These results suggest that alpha-CD/MPEG-PCL-MPEG hydrogel could serve as an injectable biomaterial that prevents LV remodeling and dilation for the treatment of MI.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk