Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2008 Mar 3;16(5):3032-40.

Counting near-infrared single-photons with 95% efficiency.

Author information

  • 1National Institute of Standards and Technology, 325 Broadway, Boulder CO 80305, USA. lita@boulder.nist.gov

Abstract

Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one- and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 % +/- 2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.

PMID:
18542389
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk