Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Neuroscience. 2008 Jul 17;154(4):1242-54. doi: 10.1016/j.neuroscience.2008.02.045. Epub 2008 Mar 7.

Effects of increasing Ca2+ channel-vesicle separation on facilitation at the crayfish inhibitory neuromuscular junction.

Author information

  • 1Department of Biology, Boston University, Boston, MA 02215, USA.

Abstract

We investigated the mechanism of facilitation at the crayfish inhibitory neuromuscular junction before and after blocking P-type Ca(2+) channels. P-type channels have been shown to be closer to releasable synaptic vesicles than non-P-type channels at this synapse. Prior to the block of P-type channels, facilitation evoked by a train of 10 action potentials at 100 Hz was increased by application of 40 mM [Mg(2+)](o), but decreased by pressure-injected EGTA. Blocking P-type channels with 5 nM omega-Aga IVA, which reduced total Ca(2+) influx and release to levels comparable to that recorded in 40 mM [Mg(2+)](o), did not change the magnitude of facilitation. We explored whether this observation could be attributed to the buffer saturation model of facilitation, since increasing the Ca(2+) channel-vesicle separation could potentially enhance the role of endogenous buffers. The characteristics of facilitation in synapses treated with omega-Aga IVA were probed with broad action potentials in the presence of K(+) channel blockers. After Ca(2+) channel-vesicle separation was increased by omega-Aga IVA, facilitation probed with broad action potential was still decreased by EGTA injection and increased by 40 mM [Mg(2+)](o). EGTA-AM perfusion was used to test the impact of EGTA over a range of concentration in omega-Aga IVA-poisoned preparations. The results showed a concentration dependent decrease in facilitation as EGTA concentration rose. Thus, probing facilitation with EGTA and reduced Ca(2+) influx showed that characteristics of facilitation are not changed after the role of endogenous buffer is enhanced by increasing Ca(2+) channel-vesicle separation. There is no clear indication that buffer saturation has become the dominant mechanism for facilitation after omega-Aga IVA poisoning. Finally, we sought correlation between residual Ca(2+) and the magnitude of facilitation. Using fluorescence transients of a low affinity Ca(2+) indicator, we calculated the ratio of fluorescence amplitude measured immediately before test pulse (residual Ca(2+)) to that evoked during action potential (local Ca(2+)). This ratio provides an estimate of relative changes between residual Ca(2+) and local Ca(2+) important for release. There is a significant increase in the ratio when Ca(2+) influx is reduced by 40 mM [Mg(2+)](o). The magnitude of facilitation exhibited a clear and positive correlation with the ratio, regardless of separation between Ca(2+) channels and releasable vesicles. This correlation suggests the importance of relative changes between residual and local Ca(2+) and lends support to the residual Ca(2+) hypothesis of facilitation.

PMID:
18541384
[PubMed - indexed for MEDLINE]
PMCID:
PMC2577849
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk