Format

Send to

Choose Destination
See comment in PubMed Commons below
Glycobiology. 2008 Sep;18(9):719-26. doi: 10.1093/glycob/cwn051. Epub 2008 Jun 5.

Disruption of thymopoiesis in ST6Gal I-deficient mice.

Author information

  • 1Department of Surgery, University of Oklahoma College of Medicine, Tulsa, OK 74135, USA.

Abstract

Thymocyte development is accompanied by sequential changes in cell surface glycosylation. For example, medullary thymocytes have increased levels of alpha2,3-linked sialic acid and a loss of asialo core 1 O-glycans as compared to cortical thymocytes. Some of these changes have been linked to fine tuning of the T cell receptor avidity. We analyzed ST6Gal I transcript abundance and levels of alpha2,6-linked sialic acid across thymocyte subsets. We found that ST6Gal I transcript levels increased following T cell receptor beta-selection suggesting that this sialyltransferase may influence the development of early thymocyte populations. Indeed, low levels of alpha2,6-linked sialic acid were found in the earliest T lineage cells, and then increased in T cell receptor beta-selected cells. To determine whether ST6Gal I influences T cell development, we analyzed ST6Gal I-deficient mice for disruptions in thymocyte populations. We found reduced thymic cellularity in the ST6Gal I-deficient mice starting in the early thymocyte compartments.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk