Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Microbiol. 2008 Jun;11(3):219-25. doi: 10.1016/j.mib.2008.04.001. Epub 2008 Jun 2.

Unlocking the diversity and biotechnological potential of marine surface associated microbial communities.

Author information

  • 1School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia. s.egan@unsw.edu.au

Abstract

Marine sessile eukaryotic hosts provide a unique surface for microbial colonisation. Chemically mediated interactions between the host and colonising microorganisms, interactions between microorganisms in the biofilm community and surface-specific physical and chemical conditions impact differently on the diversity and function of surface-associated microbial assemblages compared with those in planktonic systems. Understanding the diversity and ecology of surface-associated microbial communities will greatly contribute to the discovery of next-generation, bioactive compounds. On the basis of recent conceptual and technological advances insights into the microbiology of marine living surfaces are improving and novel bioactives, including those previously ascribed as host derived, are now revealed to be produced by members of the surface-associated microbial community.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk