Display Settings:

Format

Send to:

Choose Destination
FASEB J. 2008 Sep;22(9):3103-10. doi: 10.1096/fj.08-111310. Epub 2008 Jun 3.

The Roco protein family: a functional perspective.

Author information

  • 1Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain. imarin@ibv.csic.es

Abstract

In this review, we discuss the evolutionary, biochemical, and functional data available for members of the Roco protein family. They are characterized by having a conserved supradomain that contains a Ras-like GTPase domain, called Roc, and a characteristic COR (C-terminal of Roc) domain. A kinase domain and diverse regulatory and protein-protein interaction domains are also often found in Roco proteins. First detected in the slime mold Dictyostelium discoideum, they have a broad phylogenetic range, being present in both prokaryotes and eukaryotes. The functions of these proteins are diverse. The best understood are Dictyostelium Rocos, which are involved in cell division, chemotaxis, and development. However, this family has received extensive attention because mutations in one of the human Roco genes (LRRK2) cause familial Parkinson disease. Other human Rocos are involved in epilepsy and cancer. Biochemical data suggest that Roc domains are capable of activating kinase domains intramolecularly. Interestingly, some of the dominant, disease-causing mutations in both the GTPase and kinase domains of LRRK2 increase kinase activity. Thus, Roco proteins may act as stand-alone transduction units, performing roles that were thought so far to require multiple proteins, as occur in the Ras transduction pathway.

PMID:
18523161
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk