Display Settings:

Format

Send to:

Choose Destination
Mar Pollut Bull. 2008;57(1-5):103-7. doi: 10.1016/j.marpolbul.2008.04.015. Epub 2008 May 29.

Analysis of change of red tide species in Yodo River estuary by the numerical ecosystem model.

Author information

  • 1Research Center for Inland Sea, Kobe University Fukaeminami, Higashinada Kobe, Japan. mitsuru@maritime.kobe-u.ac.jp

Abstract

Occurrence number of red tides in Osaka Bay in Japan is more than 20 cases every year. Diatom red tide was dominant in Osaka Bay, but the non-diatom red tide was dominant in early 1990s. Therefore, the material cycling in Yodo River estuary in Osaka Bay during August from 1991 to 2000 was analyzed by using the numerical ecosystem model and field observation data to clarify the reasons of change in red tide species. Year-to-year variation in calculated concentration ratio of diatom to non-diatom corresponds to the variation in observed ratio of red tide days of diatom to non-diatom. Limiting nutrient of primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom was able to grow because of good physical and nutrient conditions from 1994 to 1996. And diatom dominated again under the good physical condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000. Phosphate concentration in the lower layer of Yodo River estuary was important to the variation in red tide species in the upper layer of Yodo River estuary.

PMID:
18513758
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk