Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2008 Jun;15(6):591-7. doi: 10.1038/nsmb.1429. Epub 2008 May 30.

Long single alpha-helical tail domains bridge the gap between structure and function of myosin VI.

Author information

  • 1Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, California 94305, USA.

Abstract

Myosin VI has challenged the lever arm hypothesis of myosin movement because of its ability to take approximately 36-nm steps along actin with a canonical lever arm that seems to be too short to allow such large steps. Here we demonstrate that the large step of dimeric myosin VI is primarily made possible by a medial tail in each monomer that forms a rare single alpha-helix of approximately 10 nm, which is anchored to the calmodulin-bound IQ domain by a globular proximal tail. With the medial tail contributing to the approximately 36-nm step, rather than dimerizing as previously proposed, we show that the cargo binding domain is the dimerization interface. Furthermore, the cargo binding domain seems to be folded back in the presence of the catalytic head, constituting a potential regulatory mechanism that inhibits dimerization.

PMID:
18511944
[PubMed - indexed for MEDLINE]
PMCID:
PMC2441774
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk