Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2008 May 29;453(7195):629-32. doi: 10.1038/nature06981.

A phase diagram for jammed matter.

Author information

  • 1Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA.


The problem of finding the most efficient way to pack spheres has a long history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal. Apart from its mathematical interest, the problem has practical relevance in a wide range of fields, from granular processing to fruit packing. There are currently numerous experiments showing that the loosest way to pack spheres (random loose packing) gives a density of approximately 55 per cent. On the other hand, the most compact way to pack spheres (random close packing) results in a maximum density of approximately 64 per cent. Although these values seem to be robust, there is as yet no physical interpretation for them. Here we present a statistical description of jammed states in which random close packing can be interpreted as the ground state of the ensemble of jammed matter. Our approach demonstrates that random packings of hard spheres in three dimensions cannot exceed a density limit of approximately 63.4 per cent. We construct a phase diagram that provides a unified view of the hard-sphere packing problem and illuminates various data, including the random-loose-packed state.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk