Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2008 Jul 3;454(7200):49-55. doi: 10.1038/nature07056. Epub 2008 May 28.

Dissecting direct reprogramming through integrative genomic analysis.

Author information

  • 1Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.

Erratum in

  • Nature. 2008 Aug 7;454(7205):794.

Abstract

Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process.

Comment in

PMID:
18509334
[PubMed - indexed for MEDLINE]
PMCID:
PMC2754827
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk