Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Plant. 2008 Sep;134(1):1-12. doi: 10.1111/j.1399-3054.2008.01113.x. Epub 2008 Apr 11.

How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis.

Author information

  • 1Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana, Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain. seguisim@btc.upv.es

Abstract

Microspore embryogenesis is the most powerful androgenic pathway to produce haploid and doubled haploid plants. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. In this review, we compile the most recent advances in the understanding of the changes undergone by the induced microspore to readapt to the new developmental scenario. We devote special attention to the efforts made to uncover changes in the transcriptome of the induced microspore and microspore-derived embryo (MDE). Finally, we discuss the influence that an in vitro environment exerts over the MDE, as compared with its zygotic counterpart.

PMID:
18507790
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk