Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2008 Jun 15;121(Pt 12):2075-86. doi: 10.1242/jcs.024588. Epub 2008 May 27.

Evolutionary analysis and molecular dissection of caveola biogenesis.

Author information

  • 1Institute for Molecular Bioscience, University of Queensland, Queensland, Brisbane, Australia.

Abstract

Caveolae are an abundant feature of mammalian cells. Integral membrane proteins called caveolins drive the formation of caveolae but the precise mechanisms underlying caveola formation, and the origin of caveolae and caveolins during evolution, are unknown. Systematic evolutionary analysis shows conservation of genes encoding caveolins in metazoans. We provide evidence for extensive and ancient, local and genomic gene duplication, and classify distinct caveolin gene families. Vertebrate caveolin-1 and caveolin-3 isoforms, as well as an invertebrate (Apis mellifera, honeybee) caveolin, all form morphologically identical caveolae in caveolin-1-null mouse cells, demonstrating that caveola formation is a conserved feature of evolutionarily distant caveolins. However, coexpression of flotillin-1 and flotillin-2 did not cause caveola biogenesis in this system. In contrast to the other tested caveolins, C. elegans caveolin is efficiently transported to the plasma membrane but does not generate caveolae, providing evidence of diversity of function in the caveolin gene family. Using C. elegans caveolin as a template to generate hybrid caveolin constructs we now define domains of caveolin required for caveolae biogenesis. These studies lead to a model for caveola formation and novel insights into the evolution of caveolin function.

PMID:
18505796
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk