Send to:

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2008 Jul;9(7):2029-35. doi: 10.1021/bm800271f. Epub 2008 May 27.

Preparation of a class of versatile, chemoselective, and amorphous polyketoesters.

Author information

  • 1Department of Chemistry, Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.


A straightforward and versatile strategy for preparing a class of biodegradable and amorphous polyketoesters is reported. A series of ketone-containing diesters and diacids were combined with di(ethylene glycol) through condensation polymerization, achieving <Mn> values of up to 10.1 x 10(3) g/mol. Glass transition temperatures ranged from -41 to -6 degrees C, rendering all of the materials liquid at room temperature. By including ketone groups in the repeat unit, facile postpolymerization modifications were possible by reaction with oxyamine-tethered ligands through the formation of an oxime linkage. Upon reaction with molecules that contain oxyamines, under mild conditions, these polymers can easily have a diverse set of side chains appended without coreagents or catalysts. The chemoselective oxime-forming coupling strategy is compatible with physiological conditions and can be done in the presence of a wide range of functional groups and biomolecules, including proteins and nucleic acids. We demonstrate the utility of this strategy by immobilizing a cell adhesive peptide (H2NO-RGD) to polyketoester films, creating cell adhesive elastomers. This immobilization strategy is synthetically flexible for designing and tailoring polymers for targeted biological applications.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk