Send to

Choose Destination
See comment in PubMed Commons below
J Dent Res. 2008 Jun;87(6):520-31.

SCPP gene evolution and the dental mineralization continuum.

Author information

  • 1Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.


Many genes critical to vertebrate skeletal mineralization are members of the secretory calcium-binding phosphoprotein (SCPP) gene family, which has evolved by gene duplication from a single ancestral gene. In humans, mutations in some of these SCPP genes have been associated with various diseases related to dentin or enamel hypoplasia. Recently, systematic searches for SCPP genes of various species have allowed us to investigate the history of phylogenetically variable dental tissues as a whole. One important conclusion is that not all disease-associated SCPP genes are present in tetrapods, and teleost fish probably have none, even in toothed species, having acquired their complement of SCPP genes through an independent duplication history. Here, we review comparative analyses of mineralized dental tissues, with particular emphasis on the use of SCPPs, within and between tetrapods and teleosts. Current knowledge suggests a close relationship among bone, dentin, teleost fish enameloid (enamel-like hard tissue), and tetrapod enamel. These tissues thus form a mineralized-tissue continuum. Contemporary dental tissues have evolved from an ancestral continuum through lineage-specific modifications.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk