Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Oecologia. 2008 Aug;157(1):131-40. doi: 10.1007/s00442-008-1054-6. Epub 2008 May 20.

Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe.

Author information

  • 1Laboratoire de Génétique et Ecologie Végétales, Université Libre de Bruxelles, 1850, chaussée de Wavre, 1160 Bruxelles, Belgium. ndassonv@ulb.ac.be

Abstract

Alien invasive plants are capable of modifying ecosystem function. However, it is difficult to make generalisations because impacts often appear to be species- and site-specific. In this study, we examined the impacts of seven highly invasive plant species in NW Europe (Fallopia japonica, Heracleum mantegazzianum, Impatiens glandulifera, Prunus serotina, Rosa rugosa, Senecio inaequidens, Solidago gigantea) on nutrient pools in the topsoil and the standing biomass. We tested if the impacts follow predictable patterns, across species and sites or, alternatively, if they are entirely idiosyncratic. To that end, we compared invaded and adjacent uninvaded plots in a total of 36 sites with widely divergent soil chemistry and vegetation composition. For all species, invaded plots had increased aboveground biomass and nutrient stocks in standing biomass compared to uninvaded vegetation. This suggests that enhanced nutrient uptake may be a key trait of highly invasive plant species. The magnitude and direction of the impact on topsoil chemical properties were strongly site-specific. A striking finding is that the direction of change in soil properties followed a predictable pattern. Thus, strong positive impacts (higher topsoil nutrient concentrations in invaded plots compared to uninvaded ones) were most often found in sites with initially low nutrient concentrations in the topsoil, while negative impacts were generally found under the opposite conditions. This pattern was significant for potassium, magnesium, phosphorus, manganese and nitrogen. The particular site-specific pattern in the impacts that we observed provides the first evidence that alien invasive species may contribute to a homogenisation of soil conditions in invaded landscapes.

PMID:
18491146
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk