Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cancer. 2008 May 19;7:40. doi: 10.1186/1476-4598-7-40.

Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma.

Author information

  • 1Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, USA. dtyang@wisc.edu

Abstract

BACKGROUND:

The proteasome inhibitor bortezomib can inhibit activation of the transcription factor NF-kappaB, a mechanism implicated in its anti-neoplastic effects observed in mantle cell lymphoma (MCL). However, NF-kappaB can be activated through many distinct mechanisms, including proteasome independent pathways. While MCL cells have been shown to harbor constitutive NF-kappaB activity, what fraction of this activity in primary MCL samples is sensitive or resistant to inhibition by bortezomib remains unclear.

RESULTS:

Proteasome activity in the EBV-negative MCL cell lines Jeko-1 and Rec-1 is inhibited by greater than 80% after exposure to 20 nM bortezomib for 4 hours. This treatment decreased NF-kappaB activity in Jeko-1 cells, but failed to do so in Rec-1 cells when assessed by electrophoretic mobility shift assay (EMSA). Concurrently, Rec-1 cells were more resistant to the cytotoxic effects of bortezomib than Jeko-1 cells. Consistent with a proteasome inhibitor resistant pathway of activation described in mouse B-lymphoma cells (WEHI231) and a breast carcinoma cell line (MDA-MB-468), the bortezomib-resistant NF-kappaB activity in Rec-1 cells is inhibited by calcium chelators, calmodulin inhibitors, and perillyl alcohol, a monoterpene capable of blocking L-type calcium channels. Importantly, the combination of perillyl alcohol and bortezomib is synergistic in eliciting Rec-1 cell cytotoxicity. The relevance of these results is illuminated by the additional finding that a considerable fraction of primary MCL samples (8 out of 10) displayed bortezomib-resistant constitutive NF-kappaB activity.

CONCLUSION:

Our findings show that bortezomib-resistant NF-kappaB activity is frequently observed in MCL samples and suggest that this activity may be relevant to MCL biology as well as serve as a potential therapeutic target.

PMID:
18489772
[PubMed - indexed for MEDLINE]
PMCID:
PMC2408930
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk