Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Dairy Sci. 2008 Jun;91(6):2215-24. doi: 10.3168/jds.2007-0752.

Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells.

Author information

  • 1Physiology Weihenstephan, Technical University Munich, D-85350 Freising, Germany.

Abstract

Pathogens invading the mammary gland cause a complex signaling network that activates the early immune defense and leads to an outcome of inflammation symptoms. To examine the importance of mammary epithelial cells in these regulations and interactions resulting in a pathogen-related course of mastitis, we characterized the mRNA expression profile of key molecules of the innate immune system by quantitative real-time PCR. Mammary gland epithelial cells isolated on d 42 of lactation from 28 first-lactation Holstein dairy cows were cultured separately under standardized conditions and treated for 1, 6, and 24 h with heat-inactivated gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Both pathogens increased mRNA expression patterns of proteins involved in pathogen recognition such as Toll-like receptors and nuclear factor-kappa B, whereas gram-negatives acted as a stronger stimulus. Furthermore, this could be confirmed by the expression profile of the proinflammatory cytokines tumor necrosis factor alpha, IL-1 beta, IL-6, and chemokines such as IL-8 and RANTES (regulated upon activation, normal T-cell expressed and secreted). Remarkably, at a low level of mRNA expression after 1 h of treatment these cytokines and chemokines were expressed at a significantly higher level in Staphyloccocus aureus than in Escherichia coli affected cells. Lactoferrin showed a deviating expression pattern to pathogen stimulation (i.e., at the 1-h measuring point Escherichia coli induced a higher mRNA expression, whereas the highest level was reached after 24 h of stimulation with Staphylococcus aureus). Complement factor 3 was the only measured factor that responded equally to both microorganisms. Our data emphasize the role of mammary epithelial cells in the immune defense of the udder and confirm their contribution to pathogen-related different courses of mastitis.

PMID:
18487644
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk