Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Med Microbiol. 2008 Jul;298(5-6):379-95. doi: 10.1016/j.ijmm.2008.01.012. Epub 2008 May 15.

Strategies for the development of vaccines conferring broad-spectrum protection.

Author information

  • 1Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.

Abstract

Efficacious vaccination needs to confer protection against the vast majority of pathogens capable of causing a particular disease. Development of such vaccines is hindered by the great variability of microbes. Most pathogens have evolved variants that are able to express non-uniform surface structures. Naturally, evolutionary pressure has selected the most immunogenic antigens to be the most versatile. A combination of these multiform surface antigens forms the basis of classification of microbes into serotypes. Unfortunately, immune response in most cases is serotype-dependent, i.e. cross-protection among serotypes/serogroups of a given pathogen is limited. This review focuses on the strategies used for the engineering of broad-protective vaccine candidates, i.e., vaccines that induce a global, serotype-independent protection. The most plausible approach is to immunize with a multivalent vaccine containing different serotypes or purified serotype-determining antigens of a given pathogen. This arrangement is, however, efficient only against those microbes that have a limited number of serotypes, or few serotypes are responsible for the majority of the infections. Instead of using multivalent vaccine cocktails, cross-protective capacity of vaccine strains could be improved by making the conserved (i.e., shared by all variants) antigens more immunogenic. Elimination or down-regulation of the non-uniform antigens may increase immunogenicity of conserved minor antigens in vaccine candidates. Alternatively, shared antigens might be over-expressed in homologous or heterologous attenuated strains. Finally, purified conserved antigens could be used as subunit vaccines. In this paper, advantages and drawbacks of several such approaches will be reviewed.

PMID:
18485818
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk