Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Microbiol. 2008 Sep;10(9):2257-66. doi: 10.1111/j.1462-2920.2008.01648.x. Epub 2008 May 11.

A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem.

Author information

  • 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. cnpeterso@gmail.com

Abstract

The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.

PMID:
18479443
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk