Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17245-9. doi: 10.1073/pnas.0707681105. Epub 2008 May 12.

A DNA-based nanomechanical device with three robust states.

Author information

  • 1Department of Chemistry, New York University, New York, NY 10003, USA.

Abstract

DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy intermediate or even a floppy end state. We describe a system in which three different structurally robust end states can be obtained, all resulting from the addition of different set strands to a single floppy intermediate. This system is an extension of the PX-JX(2) DNA device. The three states are related to each other by three different motions, a twofold rotation, a translation of approximately 2.1-2.5 nm, and a twofold screw rotation, which combines these two motions. We demonstrate the transitions by gel electrophoresis, by fluorescence resonance energy transfer, and by atomic force microscopy. The control of this system by DNA strands opens the door to trinary logic and to systems containing N devices that are able to attain 3(N) structural states.

PMID:
18474862
[PubMed - indexed for MEDLINE]
PMCID:
PMC2582246
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk