Ca2+ sparks and cellular distribution of ryanodine receptors in developing cardiomyocytes from rat

J Mol Cell Cardiol. 2008 Jun;44(6):1032-1044. doi: 10.1016/j.yjmcc.2008.03.015. Epub 2008 Mar 29.

Abstract

Although abundant ryanodine receptors (RyRs) exist in cardiomyocytes from newborn (NB) rat and despite the maturity of their single-channel properties, the RyR contribution to excitation-contraction (E-C) coupling is minimal. Immature arrangement of RyRs in the Ca(2+) release site of the sarcoplasmic reticulum and/or distant RyRs location from the sarcolemmal Ca(2+) signal could explain this quiescence. Consequently, Ca(2+) sparks and their cellular distribution were studied in NB myocytes and correlated with the formation of dyads and transverse (T) tubules. Ca(2+) sparks were recorded in fluo-4-loaded intact ventricular myocytes acutely dissociated from adult and NB rats (0-9 days old). Sparks were defined/compared in the center and periphery of the cell. Co-immunolocalization of RyRs with dihydropyridine receptors (DHPR) was used to estimate dyad formation, while the development of T tubules was studied using di-8-ANEPPS and diIC12. Our results indicate that in NB cells, Ca(2+) sparks exhibited lower amplitude (1.7+/-0.5 vs. 3.6+/-1.7 F/F(0)), shorter duration (47+/-3.2 vs. 54.1+/-3 ms), and larger width (1.7+/-0.8 vs. 1.2+/-0.4 microm) than in adult. Although no significant changes were observed in the overall frequency, central sparks increased from approximately 60% at 0-1 day to 82% at 7-9 days. While immunolocalization revealed many central release sites at 7-8 days, fluorescence labeling of the plasma membrane showed less abundant internal T tubules. This could imply that although during the first week, release sites emerge forming dyads with DHPR-containing T tubules; some of these T tubules may not be connected to the surface, explaining the RyR quiescence during E-C coupling in NB.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Calcium / metabolism*
  • Calcium Signaling / physiology*
  • Carbocyanines / pharmacology
  • Female
  • Fluorescent Dyes / pharmacology
  • Male
  • Pyridinium Compounds / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Sarcolemma / metabolism*
  • Sarcoplasmic Reticulum / metabolism*
  • Time Factors

Substances

  • 1-(3-sulfonatopropyl)-4-(beta-(2-(di-n-octylamino)-6-naphthyl)vinyl)pyridinium betaine
  • Carbocyanines
  • Fluorescent Dyes
  • Pyridinium Compounds
  • Ryanodine Receptor Calcium Release Channel
  • didodecylindocarbocyanine
  • Calcium