Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biomaterials. 2008 Aug;29(23):3324-37. doi: 10.1016/j.biomaterials.2008.04.012. Epub 2008 May 6.

In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold.

Author information

  • 1Department of Orthopaedic Surgery, National University of Singapore, Singapore.

Abstract

Although most in vitro studies indicate that silk is a suitable biomaterial for ligament tissue engineering, in vivo studies of implanted silk scaffolds for ligament reconstruction are still lacking. The objective of this study is to investigate anterior cruciate ligament (ACL) regeneration using mesenchymal stem cells (MSCs) and silk scaffold. The scaffold was fabricated by incorporating microporous silk sponges into knitted silk mesh, which mimicked the structures of ligament extracellular matrix (ECM). In vitro culture demonstrated that MSCs on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of ligament-specific genes also increased with time. Then MSCs/scaffold was implanted to regenerate ACL in vivo. After 24 weeks, histology observation showed that MSCs were distributed throughout the regenerated ligament and exhibited fibroblast morphology. The key ligament ECM components including collagen I, collagen III, and tenascin-C were produced prominently. Furthermore, direct ligament-bone insertion with typical four zones (bone, mineralized fibrocartilage, fibrocartilage, ligament) was reconstructed, which resembled the native structure of ACL-bone insertion. The tensile strength of regenerated ligament also met the mechanical requirements. Moreover, its histological grading score was significantly higher than that of control. In conclusion, the results imply that silk scaffold has great potentials in future clinical applications.

PMID:
18462787
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk