Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biosci Biotechnol Biochem. 2008 May;72(5):1242-8. Epub 2008 May 7.

Indole derivatives sustain embryonic stem cell self-renewal in long-term culture.

Author information

  • 1Central R&D Laboratories, Asahi Kasei Corporation, Fuji, Shizuoka 416-8501, Japan. miyabayashi.tb@om.asahi-kasei.co.jp

Abstract

Embryonic stem cells (ESCs), which have characteristics such as self-renewal, indefinite proliferation, and pluripotency, are thought to hold great promise for regenerative medicine. ESCs are generally cultured on mouse embryonic fibroblast (MEF) or MEF conditioned medium (MEF-CM). However, for therapeutic applications, it is preferable for ESCs to be cultured under chemically defined conditions. Here, we report synthetic compounds that allow expansion of undifferentiated mouse ESCs in the absence of MEF, Leukemia Inhibitory Factor (LIF), and Fetal Bovine Serum (FBS). ESCs cultured for more than 30 d in a serum-free medium supplemented with indole derivertives retained their characteristic morphology and expressed markers such as SSEA-1, OCT3/4, Rex-1, Sox2, and Nanog. They consistently differentiated into many types of cells, including neurons, muscle cells, and hepatocytes. These results indicate that our compounds provide a more efficient and safer large-scale culture system for pluripotent ESCs, and hence might contribute to the use of ESCs in therapeutic applications.

PMID:
18460821
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk