Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biosci Biotechnol Biochem. 2008 May;72(5):1168-75. Epub 2008 May 7.

Recent advances regarding diterpene cyclase genes in higher plants and fungi.

Author information

  • 1Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan. toyomasu@tds1.tr.yamagata-u.ac.jp

Abstract

Cyclic diterpenoids are commonly biosynthesized from geranylgeranyl diphosphate (GGDP) through the formation of carbon skeletons by specific cyclases and subsequent chemical modifications, such as oxidation, reduction, methylation, and glucosidation. A variety of diterpenoids are produced in higher plants and fungi. Rice produces four classes of diterpene phytoalexins, phytocassanes A to E, oryzalexins A to F, oryzalexin S, and momilactones A and B. The six diterpene cyclase genes involved in the biosynthesis of these phytoalexins were identified and characterized. Fusicoccin A was produced by the phytopathogenic Phomopsis amygdali and served as a plant H(+)-ATPase activator. A PaFS, encoding a fungal diterpene synthase responsible for fusicoccin biosynthesis, was isolated. The PaFS is an unusual chimeric diterpene synthase that possesses not only terpene cyclase activity (the formation of fusicoccadiene, a biosynthetic precursor of fusicoccin A), but also prenyltransferase activity (the formation of GGDP). Thus, we identified a unique multifunctional diterpene synthase family in fungi.

PMID:
18460786
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk