Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Cell Biol. 2008 May 5;181(3):523-36. doi: 10.1083/jcb.200709029.

The formin mDia2 stabilizes microtubules independently of its actin nucleation activity.

Author information

  • 1Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA.

Abstract

A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.

PMID:
18458159
[PubMed - indexed for MEDLINE]
PMCID:
PMC2364705
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk