Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Exp Pathol. 2008 Oct;89(5):321-31. doi: 10.1111/j.1365-2613.2008.00589.x. Epub 2008 Apr 30.

The molecular and cellular basis of exostosis formation in hereditary multiple exostoses.

Author information

  • 1Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.

Abstract

The different clinical entities of osteochondromas, hereditary multiple exostoses (HME) and non-familial solitary exostosis, are known to express localized exostoses in their joint metaphyseal cartilage. In the current study biopsies of osteochondromas patients were screened with respect to a number of cellular and molecular parameters. Specifically, cartilaginous biopsy samples of nine HME patients, 10 solitary exostosis patients and 10 articular cartilages of control subjects were collected and cell cultures were established. Results obtained showed that one of the two HME samples that underwent DNA sequencing analysis (HME-1) had a novel mutation for an early stop codon, which led to an aberrant protein, migrating at a lower molecular weight position. The EXT-1 mRNA and protein levels in chondrocyte cultures derived from all nine HME patients were elevated, compared with solitary exostosis patients or control subjects. Furthermore, cell cultures of HME patients had significantly decreased pericellular heparan sulphate (HS) in comparison with cultures of solitary exostosis patients or control subjects. Immunohistochemical staining of tissue sections and Western blotting of cell cultures derived from HME patients revealed higher levels of heparanase compared with solitary exostosis patients and of control subjects. Further investigations are needed to determine whether the low pericellular HS levels in HME patients stem from decreased biosynthesis of HS, increased degradation or a combination of both. In conclusion, it appears that due to a mutated glycosyltransferase, the low content of pericellular HS in HME patients leads to the anatomical deformations with exostoses formation. Hence, elevation of HS content in the pericellular regions should be a potential molecular target for correction.

Comment in

PMID:
18452536
[PubMed - indexed for MEDLINE]
PMCID:
PMC2613984
Free PMC Article

Images from this publication.See all images (11)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk