Send to

Choose Destination
See comment in PubMed Commons below
Eur Respir J. 2008 May;31(5):1107-13. doi: 10.1183/09031936.00155507.

Regulation of alveolar epithelial function by hypoxia.

Author information

  • 1Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.


Patients with acute respiratory distress syndrome and high-altitude pulmonary oedema build up excess lung fluid, which leads to alveolar hypoxia. In patients with acute respiratory distress syndrome and hypoxia, there is a decrease in oedema fluid clearance, due in part to the downregulation of plasma membrane sodium-potassium adenosine triphosphatase (Na,K-ATPase). In alveolar epithelial cells, acute hypoxia promotes Na,K-ATPase endocytosis from the plasma membrane to intracellular compartments, resulting in inhibition of Na,K-ATPase activity. Exposure to prolonged hypoxia leads to degradation of plasma membrane Na,K-ATPase. The downregulation of plasma membrane Na,K-ATPase reduces adenosine triphosphate demand, as part of a survival mechanism of cellular adaptation to hypoxia. Hypoxia has also been shown to disassemble and degrade the keratin intermediate filament network, a fundamental component of the cell cytoskeleton, affecting epithelial barrier function. Accordingly, better understanding of the mechanisms regulating cellular adaptation to hypoxia may lead to the development of novel therapeutic strategies for acute respiratory distress syndrome and high-altitude pulmonary oedema patients.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk