Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2008 Jun 1;318(1):203-14. doi: 10.1016/j.ydbio.2008.03.032. Epub 2008 Mar 28.

Lamination of the cerebral cortex is disturbed in Gli3 mutant mice.

Author information

  • 1Institute for Animal Developmental and Molecular Biology, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.

Abstract

The layered organization of the cerebral cortex develops in an inside-out pattern, a process which is controlled by the secreted protein reelin. Here we report on cortical lamination in the Gli3 hypomorphic mouse mutant Xt(J)/Pdn which lacks the cortical hem, a major source of reelin(+) Cajal Retzius cells in the cerebral cortex. Unlike other previously described mouse mutants with hem defects, cortical lamination is disturbed in Xt(J)/Pdn animals. Surprisingly, these layering defects occur in the presence of reelin(+) cells which are probably derived from an expanded Dbx1(+) progenitor pool in the mutant. However, while these reelin(+) neurons and also Calretinin(+) cells are initially evenly distributed over the cortical surface they form clusters later during development suggesting a novel role for Gli3 in maintaining the proper arrangement of these cells in the marginal zone. Moreover, the radial glial network is disturbed in the regions of these clusters. In addition, the differentiation of subplate cells is affected which serve as a framework for developing a properly laminated cortex.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk