Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6272-7. doi: 10.1073/pnas.0711561105. Epub 2008 Apr 28.

Outer membrane protein G: Engineering a quiet pore for biosensing.

Author information

  • 1Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.

Abstract

Bacterial outer membrane porins have a robust beta-barrel structure and therefore show potential for use as stochastic sensors based on single-molecule detection. The monomeric porin OmpG is especially attractive compared with multisubunit proteins because appropriate modifications of the pore can be easily achieved by mutagenesis. However, the gating of OmpG causes transient current blockades in single-channel recordings that would interfere with analyte detection. To eliminate this spontaneous gating activity, we used molecular dynamics simulations to identify regions of OmpG implicated in the gating. Based on our findings, two approaches were used to enhance the stability of the open conformation by site-directed mutagenesis. First, the mobility of loop 6 was reduced by introducing a disulfide bond between the extracellular ends of strands beta12 and beta13. Second, the interstrand hydrogen bonding between strands beta11 and beta12 was optimized by deletion of residue D215. The OmpG porin with both stabilizing mutations exhibited a 95% reduction in gating activity. We used this mutant for the detection of adenosine diphosphate at the single-molecule level, after equipping the porin with a cyclodextrin molecular adapter, thereby demonstrating its potential for use in stochastic sensing applications.

Comment in

  • Engineering channels: atomic biology. [Proc Natl Acad Sci U S A. 2008]
PMID:
18443290
[PubMed - indexed for MEDLINE]
PMCID:
PMC2359795
Free PMC Article

Images from this publication.See all images (6)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk