Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pain. 2008 Sep 30;139(1):90-105. doi: 10.1016/j.pain.2008.03.016. Epub 2008 Apr 28.

Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain.

Author information

  • 1Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.

Abstract

Keratinocytes are implicated in sensory transduction and can influence nociception, but whether these contribute to chronic pain is not known. In neurons, voltage-gated sodium channels (Na(v)) are involved in neuropathic pain and are activated by depolarization. Since keratinocytes can also show changes in membrane potential, we used RT-PCR, in situ hybridization, and immunohistochemistry to investigate the expression of sodium channels in these cells. Na(v)1.1, Na(v)1.6, and Na(v)1.8 were localized within keratinocytes in rat epidermis. In addition, sodium channels contribute to the release of ATP from rat keratinocytes in response to increased [K(+)](o), implicating sodium channels in keratinocyte ligand release and nociception. To examine whether keratinocytes may contribute to human pain states, we analyzed sodium channel expression in human skin biopsies from subjects with complex regional pain syndrome Type 1 (CRPS) and post-herpetic neuralgia (PHN) using immunohistochemistry. Control skin exhibited immunolabeling for Na(v)1.5, Na(v)1.6 and Na(v)1.7. In contrast, painful skin from CRPS and PHN subjects displayed Na(v)1.1, Na(v)1.2, and Na(v)1.8 immunolabeling, in addition to substantially increased signal for Na(v)1.5, Na(v)1.6, Na(v)1.7. These observations lead us to propose that pathological increases in keratinocyte sodium channel expression may contribute to pain by increasing epidermal ATP release, resulting in excessive activation of P2X receptors on primary sensory axons. Consistent with this hypothesis, animal models of neuropathic pain exhibit increases in subcutaneous ATP release and activity of primary sensory neurons, and peripheral administration of P2X antagonists has been shown to reduce neuropathic pain in humans.

PMID:
18442883
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk