Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Curr Opin Struct Biol. 2008 Aug;18(4):432-41. doi: 10.1016/j.sbi.2008.03.005. Epub 2008 Apr 26.

Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases.

Author information

  • 1Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. surban@jhmi.edu

Abstract

Cleavage of proteins within their membrane-spanning segments is an ancient regulatory mechanism that has evolved to control a myriad of cellular processes in all forms of life. Although three mechanistic families of enzymes have been discovered that catalyze hydrolysis within the water-excluding environment of the membrane, how they achieve this improbable reaction has been both a point of controversy and skepticism. The crystal structures of rhomboid and site-2 protease, two different classes of intramembrane proteases, have been solved recently. Combined with current biochemical analyses, this advance provides an unprecedented view of how nature has solved the problem of facilitating hydrolysis within membranes in two independent instances. We focus on detailing the similarities between these unrelated enzymes to define core biochemical principles that govern this conserved regulatory mechanism.

PMID:
18440799
[PubMed - indexed for MEDLINE]
PMCID:
PMC2572676
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk