Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 2008 Jul;43(7):645-52. doi: 10.1016/j.exger.2008.03.004. Epub 2008 Mar 20.

The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more?

Author information

  • 1Department of Legal Medicine, University Hospital Schleswig-Holstein-Campus Luebeck, Kahlhorststrasse 31-35, 23562 L├╝beck, Germany. Christoph.Meissner@uk-sh.de

Abstract

It has been suggested that deletions of mitochondrial DNA (mtDNA) are important players with regard to the ageing process. Since the early 1990s, the 4977 bp deletion has been studied in various tissues, especially in postmitotic tissues with high energy demand. Unfortunately, some of these studies included less than 10 subjects, so the aim of our study was to quantify reliably the deletion amount in nine different regions of human brain, heart and skeletal muscle in a cohort of 92 individuals. The basal ganglia contain the highest deletion amounts with values up to 2.93% and differences in deletion levels between early adolescence and older ages were up to three orders of magnitude. Values in frontal lobe were on average an order of magnitude lower, but lowest in cerebellar tissue where the amount was on average only 5 x 10(-3) of the basal ganglia. The deletion started to accumulate in iliopsoas muscle early in the fourth decade of life with values between 0.00019% and 0.0035% and was highest in a 102-year-old woman with 0.14%. In comparison to skeletal muscle, the overall abundance in heart muscle of the left ventricle was only one-third. The best linear logarithmic correlation between amount of the deletion and age was found in substantia nigra with r=0.87 (p<0.0005) followed by anterior wall of the left ventricle (r=0.82; p<0.0005). With regard to mitochondrial DNA damage, we propose to use the 4977 bp deletion as an ideal biomarker to discriminate between physiological ageing and accelerated ageing. The biological meaning of mitochondrial deletions in the process of ageing is under discussion, but there is experimental evidence that large-scale deletions impair the oxidative phosphorylation in single cells and sensitize these cells to undergo apoptosis.

PMID:
18439778
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk