Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2008 May;8(5):663-71. doi: 10.1039/b719806j. Epub 2008 Mar 20.

Fabrication of a modular tissue construct in a microfluidic chip.

Author information

  • 1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Abstract

By combining microfluidics and soft-lithographic molding of gels containing mammalian cells, a device for three-dimensional (3D) culture of mammalian cells in microchannels was developed. Native components of the extracellular matrix, including collagen or Matrigel, made up the matrix of each molded piece (module) of cell-containing gel. Each module had at least one dimension below approximately 300 microm; in modules of these sizes, the flux of oxygen, nutrients, and metabolic products into and out of the modules was sufficient to allow cells in the modules to proliferate to densities comparable to those of native tissue (10(8)-10(9) cells cm(-3)). Packing modules loosely into microfluidic channels and chambers yielded structures permeated with a network of pores through which cell culture medium could flow to feed the encapsulated cells. The order in the packed assemblies increased as the width of the microchannels approached the width of the modules. Multiple cell types could be spatially organized in the small microfluidic channels. Recovery and analysis of modules after 24 h under constant flow of medium (200 microL h(-1)) showed that over 99% of encapsulated cells survived this interval in the microfluidic chamber.

PMID:
18432334
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk