Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2008 May 8;453(7192):246-50. doi: 10.1038/nature06867. Epub 2008 Apr 16.

Chromatin decouples promoter threshold from dynamic range.

Author information

  • 1Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer 307, Cambridge, Massachusetts 02138, USA.

Abstract

Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.

PMID:
18418379
[PubMed - indexed for MEDLINE]
PMCID:
PMC2435410
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk