Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2008 Jun;41(2):286-301. doi: 10.1016/j.neuroimage.2008.02.042. Epub 2008 Mar 6.

Robust group analysis using outlier inference.

Author information

  • 1Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK. woolrich@fmrib.ox.ac.uk

Abstract

Neuroimaging group studies are typically performed with the assumption that subjects used are randomly drawn from a population of subjects. The population of subjects is assumed to have a distribution of effect sizes associated with it that are Gaussian distributed. However, in practice, group studies can include "outlier" subjects whose effect sizes are completely at odds with the general population for reasons that are not of experimental interest. If ignored, these outliers can dramatically affect the inference results. To solve this problem, we propose a group inference approach which includes inference of outliers using a robust general linear model (GLM) approach. This approach models the errors as being a mixture of two Gaussian distributions, one for the normal population and one for the outliers. Crucially the robust GLM is part of a traditional hierarchical group model which uses GLMs at each level of the hierarchy. This combines the benefits of outlier inference with the benefits of using variance information from lower levels in the hierarchy. A Bayesian inference framework is used to infer on the robust GLM, while using the lower level variance information. The performance of the method is demonstrated on simulated and fMRI data and is compared with iterative reweighted least squares and permutation testing.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk