Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Biol Interact. 2008 May 28;173(2):77-83. doi: 10.1016/j.cbi.2008.02.010. Epub 2008 Mar 6.

Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats.

Author information

  • 1Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India. paribalaji@gmail.com

Abstract

Nickel (Ni), a major environmental pollutant, is known for its wide toxic manifestations. In the present study caffeic acid (CA), one of the most commonly occurring phenolic acids in fruits, grains and dietary supplements, was evaluated for its protective effect against the Ni induced oxidative damage in liver. In this investigation, Ni (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. CA was administered orally (15, 30 and 60 mg/kg body weight) for 20 days with intraperitoneal administration of Ni. Ni induced liver damage was clearly shown by the increased activities of serum hepatic enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH) along with increased elevation of lipid peroxidation indices (thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides). The toxic effect of Ni was also indicated by significantly decreased levels of enzymatic (superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (glutathione (GSH), vitamin C and vitamin E). CA administered at a dose of 60 mg/kg body weight significantly reversed the activities of hepatic marker enzymes to their near normal levels when compared with other two doses. In addition, CA significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. All these changes were supported by histological observations. The results indicate that CA may be beneficial in ameliorating the Ni induced oxidative damage in the liver of rats.

PMID:
18405891
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk