Display Settings:


Send to:

Choose Destination
Am J Pathol. 2008 May;172(5):1430-40. doi: 10.2353/ajpath.2008.070951. Epub 2008 Apr 10.

The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/-9.

Author information

  • 1UMR 7079: Physiologie et physiopathologie, CNRS, Université Pierre et Marie Curie, 7, quai Saint Bernard, 75005 Paris Cedex, France.


The Notch pathway is involved in the regulation of the migratory/proliferative phenotype acquired by vascular smooth muscle cells (VSMCs) in the pro-inflammatory context of vascular diseases. Here, we investigated whether docosahexaenoic acid (DHA), a polyunsaturated, omega-3 fatty acid, could reduce fibrinolytic/matrix-metalloproteinase (MMP) activity and whether this reduction occurs through the modulation of Notch signaling. Rat VSMCs were transdifferentiated with interleukin-1beta and then treated with DHA. Migration/proliferation was determined by performing a wound healing assay and measuring MMP-2/-9 activity, type 1 plasminogen activator inhibitor levels, and the expression of these proteins. The involvement of Notch in regulating the fibrinolytic/MMP system was evidenced using Notch pathway inhibitors and the forced expression of Notch1 and Notch3 intracellular domains. DHA significantly decreased VSMC migration/proliferation induced by interleukin-1beta as well as fibrinolytic/MMP activity. Prevention of Notch1 target gene transcription enhanced the interleukin-1beta effects on MMPs and on migration, whereas Notch3 intracellular domain overexpression reduced these effects. Finally, DHA increased Notch3 expression, Hes-1 transcription (a Notch target gene), and enhanced gamma-secretase complex activity. These results suggest that inhibition of the Notch pathway participates in the transition of VSMCs toward a migratory phenotype. These results also suggest that the beneficial inhibitory effects of DHA on fibrinolytic/MMP activity are related in part to the effects of DHA on the expression of Notch pathway components, providing new insight into the mechanisms by which omega-3 fatty acids prevent cardiovascular diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk