Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Viral Hepat. 2008 Jul;15(7):508-14. doi: 10.1111/j.1365-2893.2008.00971.x. Epub 2008 Apr 4.

Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride in rats.

Author information

  • 1Basic Medical Science Education Center, College of Medicine and Health, Fooyin University, Kaohsiung, Taiwan. mt016@mail.fy.edu.tw

Abstract

Silymarin, a standardized extract of the milk thistle (Silybum marianum), has a long tradition as a herbal remedy, and was introduced as a hepatoprotective agent a few years ago. However, the therapeutic effects of silymarin remain undefined. Carbon tetrachloride (CCl4) is a xenobiotic used extensively to induce oxidative stress and is one of the most widely used hepatic toxins for experimental induction of liver fibrosis in the laboratory. In this study, we investigated the restoration of the CCl4-induced hepatic fibrosis by high dose of silymarin in rats. After treatment with oil (as normal group; n = 6) or CCl4 [as model (n = 7) and therapeutic (n = 7) groups] by intragastric delivery for 8 weeks for the induction of liver fibrosis, the rats in the normal and model group were administered orally normal saline four times a week for 3 weeks whilst the therapeutic group received silymarin (200 mg/kg). The histopathological changes were observed with Masson staining. The results showed that the restoration of the CCl4-induced damage of liver fibrosis in the therapeutic group was significantly increased as compared to that in the model group. Moreover, silymarin significantly decreased the elevation of aspartate aminotransferase (AST), alanine aminotransferase, and alkaline phosphatase in serum, and also reversed the altered expressions of alpha-smooth muscle actin in liver tissue. Therefore, these findings indicated that silymarin may have the potential to increase the resolution of the CCl4-induced liver fibrosis in rats.

PMID:
18397225
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk