Format

Send to

Choose Destination
See comment in PubMed Commons below
Leuk Res. 2008 Nov;32(11):1661-8. doi: 10.1016/j.leukres.2008.02.019. Epub 2008 Apr 18.

Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions.

Author information

  • 1Department of Clinical Cell Biology and Hematology Unit, IRS-CSFU, Southern Denmark University, Vejle Hospital, Vejle, Denmark.

Abstract

Myeloma bone disease is due to bone degradation by osteoclasts, and absence of repair by bone forming osteoblasts. Recent observations suggest that the anti-myeloma drug bortezomib, a proteasome inhibitor, stimulates bone formation and may inhibit bone resorption. Here, we tested bortezomib on cultured osteoclasts in conditions mimicking the pulse treatment used in the clinic, thereby avoiding continuous proteasome inhibition and unselective toxicity. A 3 h pulse with 25 nM bortezomib followed by a 3-day culture in its absence markedly inhibited osteoclast activity as evaluated through bone resorption, TRAcP release, and RANKL-induced NF-kappaB translocation into nuclei, an event dependent on proteasomes and critical for osteoclast function. The effect on TRAcP was maximal during the first 24 h post-pulse, and then tended to subside. Importantly, applying this pulse treatment to cultured myeloma cells drastically reduced their survival. We measured next the levels of two bone resorption markers in patients during the 3 days following five and seven therapeutic bortezomib administrations, respectively. These levels decreased significantly already 1-2 days after injection, and then increased, showing temporary inhibition of osteoclast activity and paralleling the in vitro effect on TRAcP. Our study demonstrates a direct inhibition of osteoclasts by bortezomib in conditions relevant to treatment of myeloma.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk