Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Cell. 2008 Apr;13(4):355-64. doi: 10.1016/j.ccr.2008.02.010.

Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.

Author information

  • 1Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA.

Abstract

We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18(INK4C) and p16(INK4A) codeletion. Functional reconstitution of p18(INK4C) in GBM cells null for both p16(INK4A) and p18(INK4C) resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18(INK4C) in p16(INK4A)-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16(INK4A) in primary astrocytes induced a concomitant increase in p18(INK4C). Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18(INK4C) in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.

PMID:
18394558
[PubMed - indexed for MEDLINE]
PMCID:
PMC2292238
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk