Format

Send to:

Choose Destination
See comment in PubMed Commons below
Electrophoresis. 2008 May;29(9):1844-51. doi: 10.1002/elps.200700551.

On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.

Author information

  • 1State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P. R. China. chenxing2004star@yahoo.com.cn

Abstract

Integrating cell lysis and DNA purification process into a micrototal analytical system (microTAS) is one critical step for the analysis of nucleic acids. On-chip cell lysis based on a chemical method is realized by sufficient blend of blood sample and the lyzing reagent. In this paper two mixing models, T-type mixing model and sandwich-type mixing model, are proposed and simulation of those models is conducted. Result of simulation shows that the sandwich-type mixing model with coiled channel performs best and this model is further used to construct the microfluidic biochip for on-line cell lysis and DNA extraction. The result of simulation is further verified by experiments. It asserts that more than 80% mixing of blood sample and lyzing reagent which guarantees that completed cell lysis can be achieved near the inlet location when the cell/buffer velocity ratio is less than 1:5. After cell lysis, DNA extraction by means of a solid-phase method is implemented by using porous silicon matrix which is integrated in the biochip. During continuous flow process in the microchip, rapid cell lysis and PCR-amplifiable genomic DNA purification can be achieved within 20 min. The potential of this microfluidic biochip is illustrated by pretreating a whole blood sample, which shows the possibility of integration of sample preparation, PCR, and separation on a single device to work as portable point-of-care medical diagnostic system.

PMID:
18393339
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk