Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2008 Jul;25(7):1260-73. doi: 10.1093/molbev/msn001. Epub 2008 Apr 3.

Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family.

Author information

  • 1Department of Plant Biology, Miller Plant Sciences Building, University of Georgia, GA, USA.


Members of the CYCLOIDEA (CYC)/TEOSINTE-BRANCHED1 (TB1) group of transcription factors have been implicated in the evolution of zygomorphic (i.e., bilaterally symmetric) flowers in Antirrhinum and Lotus and the loss of branching phenotype during the domestication of maize. The composite inflorescences of sunflower (Helianthus annuus L. Asteraceae) contain both zygomorphic and actinomorphic (i.e., radially symmetric) florets (rays and disks, respectively), and the cultivated sunflower has evolved an unbranched phenotype in response to domestication from its highly branched wild progenitor; hence, genes related to CYC/TB1 are of great interest in this study system. We identified 10 members of the CYC/TB1 gene family in sunflower, which is more than found in any other species investigated to date. Phylogenetic analysis indicates that these genes occur in 3 distinct clades, consistent with previous research in other eudicot species. A combination of dating the duplication events and linkage mapping indicates that only some of the duplications were associated with polyploidization. Cosegregation between CYC-like genes and branching-related quantitative trait loci suggest a minor, if any, role for these genes in conferring differences in branching. However, the expression patterns of one gene suggest a possible role in the development of ray versus disk florets. Molecular evolutionary analyses reveal that residues in the conserved domains were the targets of positive selection following gene duplication. Taken together, these results indicate that gene duplication and functional divergence have played a major role in diversification of the sunflower CYC gene family.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk