Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 2008 Jun 6;320(5881):1308. doi: 10.1126/science.1156965. Epub 2008 Apr 3.

Fine structure constant defines visual transparency of graphene.

Author information

  • 1Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, M13 9PL Manchester, UK.

Abstract

There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

PMID:
18388259
[PubMed]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk